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Abstract Poly(ethylene adipate) (PEA) and polytetramethylene ether glycol

(PTMEG) were used as compatibilizers in the biodegradable polymer blend of

poly(L-lactic acid)/poly(butylene succinate-co-L-lactate) (PLLA/PBSL). The com-

patibilizers of various contents were incorporated into the blend using a Haake

internal mixer. The compatibilization between PEA and PTMEG on the blends was

measured using thermogravimetric analysis (TGA), flexural test, field emission

scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR)

spectroscopy. From the TGA results, it was found that the thermal stability of the

blend improved with the addition of PEA. The flexural strength showed a depen-

dency on the extent of the secondary forces interaction between PEA and PTMEG

with the blends. This observation corresponded well with the FESEM micrographs.

Based on the FTIR analysis, the physical interaction between PEA and PLLA/PBSL

was due to the presence of secondary forces.

Keywords Poly(butylene succinate-co-L-lactate) (PBSL) � Poly(L-lactic acid)

(PLLA) � Compatibilization � Blend � Interfacial adhesion � Strength

Introduction

Poly(L-lactic acid) (PLLA) is an aliphatic polyester that can be produced from

renewable agricultural resources such as corn starch and beet sugar [1]. Recently,
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PLLA has been studied extensively due to its biodegradability, biocompatibility,

and processability. In addition, its mechanical properties are comparable to those of

petroleum-based polymers, making it suitable for biomedical applications, such as

controlled-release devices, absorbable sutures, and orthopedic implants [2].

However, its low toughness and impact resistance, poor thermal stability, and high

production cost have limited its applications.

In this context, polymer blending is a simple and cheap yet effective method of

obtaining new materials with desired properties [3]. The blending of PLLA with

polymers that exhibit ductile impact fracture behaviors, such as poly(e-caprolac-

tone) (PCL) [4], poly(3-hydroxybutyrate) (PHB) [5], poly(butylene succinate)

(PBS) [6], poly(butylene succinate-co-L-lactate) (PBSL) [7], poly(vinyl alcohol)

(PVA) [8], and poly(hydroxyl ester ether) [9], have shown to contribute toughness

and flexibility to PLLA. Regarding the PLLA/PBSL blend, Shibata et al. [7]

reported that the elongation at break and the isothermal and non-isothermal

crystallization of the PLLA component are enhanced by the addition of a small

amount of PBSL. Nevertheless, the PLLA/PBSL blend is immiscible, and the poor

interfacial adhesion between the two phases reduces the flexural strength and

fracture toughness of the blend. The miscibility of an immiscible blend can be

improved by using a compatibilizer, which is usually a block copolymer containing

blocks that are chemically identical to the constituting polymers of the blend [10]. A

compatibilizer of similar chemical structure should allow for the formation of a

good interaction, either physically or chemically, between both polymers in the

blend, thereby improving the miscibility of the blend. This has been the general

strategy in designing suitable compatibilizers to improve several immiscible blends

[11–13]. Examples of the compatibilizers used in PLLA/PBSL blends are

diglycerine tetraacetate [14], lysine triisocynate (LTI) [15], and polyethylene

oxide–polypropylene oxide–polyethylene oxide (PEO–PPO–PEO) triblock copoly-

mer [16]. According to Vilay et al. [15], LTI results in a chemical bonding with

PLLA and PBSL, whereas in the case of the PEO–PPO–PEO triblock copolymer,

there is a physical bonding between the copolymer and the PLLA/PBSL blend,

which involves secondary forces, such as hydrogen bonding and hydrophobic

interaction [16]. Both chemical and physical bonds improve the miscibility of the

PLLA/PBSL blend. The role of secondary forces in enhancing the miscibility of

polymer blends has been clearly documented by Mekhilef and Hadjiandreou [17],

Shafee [18], Kim and Kim [19], and Naveen Kumar et al. [20].

In this study, poly(ethylene adipate) (PEA) and polytetramethylene ether glycol

(PTMEG) were used as compatibilizers for the PLLA/PBSL blend to modify the

immiscible morphology and mechanical properties of the PLLA/PBSL blend. No

study on the compatibilization of the PLLA/PBSL blend with these two materials has

been reported yet. Both PEA and PTMEG contain hydroxyl groups (at both ends of the

molecules), ether bonds, and repeating methylene units. However, PEA contains

carbonyl groups that are not present in PTMEG. The former is expected to affect a

different level of interaction between PLLA and PBSL in the blend. The effectiveness

of compatibilization between the two compatibilizers (i.e., PEA and PTMEG) and the

blend was assessed by Fourier transform infrared (FTIR) spectroscopy, flexural test,

and field emission scanning electron microscopy (FESEM).
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Experimental

Materials

PLLA pellets (Lacty 5000) with a weight-average molecular weight of 1.45 9 105

and PBSL pellets with a weight-average molecular weight of 1.47 9 105 were

obtained from Shimadzu Co. Ltd. and Mitsubishi Chemical Corp., respectively.

PEA with a weight-average molecular weight of 10,000 and PTMEG with a

number-average molecular weight of 650 were purchased from Sigma Aldrich. The

chemical structures of PLLA, PBSL, PEA, and PTMEG are shown in Fig. 1.

Blend preparation

PLLA and PBSL pellets were melt mixed with either PEA or PTMEG (2, 4, and

6 phr) for 7 min using a Haake internal mixer with a twin screw speed of 50 rpm at

170 �C. To minimize degradation due to hydrolysis, PLLA and PBSL pellets were

oven dried for 24 h at 80 �C before mixing. After blending, the solidified blends

were hot pressed for 5 min at 180 �C and 10 MPa. This was followed by cooling to

room temperature. The specimens were then sealed in plastic bags and kept in a

desiccator for characterization.

Thermogravimetric analysis (TGA)

A Pyris Diamond thermogravimetric analyzer (TGA) was used to measure the

thermal stability and decomposition temperature of the test samples. This was

conducted by monitoring the weight change that occurred as a specimen was heated.

Measurements were carried out in an inert atmosphere, and weight loss was

recorded as a function of increasing temperature. TGA was run from 30 to 600 �C at

a heating rate of 10 �C/min.
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Fig. 1 Chemical structures of a PLLA, b PBSL, c PTMEG, and d PEA
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Flexural test

Flexural test was performed according to the standard ASTM D790-03 using the

Instron Universal Testing Machine Model 3366. Specimens of rectangular bars with

dimensions of 100 9 12.7 9 3 mm3 were prepared for the mechanical test. A

cross-head speed of 10.00 mm/min and a span length of 50 mm were employed in

the test. The flexural strengths and moduli were computed based on the average

results of the five specimens tested.

Morphological study

Cryofractured surfaces of the PLLA blends were examined using a field emission

scanning electron microscope (FESEM) Model Supra 35 VP Zeiss. The specimens

were prepared by immersing the flexural test bars in liquid nitrogen for about

30 min. The fracture surfaces were sputtered with gold before the examination.

Fourier transform infrared (FTIR) spectroscopy

A Perkin-Elmer Spectrum One FTIR spectrometer was used to obtain the FTIR

spectra of the PLLA/PBSL blends containing different compatibilizers. The analysis

was conducted with four scans at a range of 550–4,000 cm-1.

Results and discussion

Thermogravimetric analysis (TGA)

Figures 2 and 3 display the TGA and DTG thermograms of PLLA/PBSL blends

added with varying contents of PEA, respectively. As shown in Fig. 2, the onset

decomposition temperature of the blend decreased with increasing PEA content in

the blend. However, the decomposition temperature at weight loss of 50% (Td50%)

of the blend containing PEA is slightly higher than that of the uncompatibilized

blend. It is observed that Td50% of the 75/25 blend is approximately 364 �C whereas

Td50% of the blends added with 2, 4, and 6 phr of PEA are 372, 371, and 365 �C,

respectively. This suggests that the PLLA/PBSL blend decomposed slower above

365 �C in the presence of PEA. In other words, addition of PEA improved the

thermal stability of the PLLA/PBSL blend. This is evidenced by the shifting of

peaks to higher temperature with increasing PEA content in DTG curves as depicted

in Fig. 3. In Fig. 3, the doublet found in the DTG curve of uncompatibilized PLLA/

PBSL blend indicates that the sample experienced two steps of thermal degradation,

wherein the first peak corresponds to the decomposition of PLLA while the second

peak is attributed to the decomposition of PBSL. It is observed that the doublet

coalesced with each other after adding PEA into the blend system. This suggests

that PEA improved the miscibility of the PLLA/PBSL blend, resulting in a single

step of thermal decomposition. Apart from that, the weight loss of a polymer as a

function of temperature which is commonly determined by TGA, can reflect the
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thermal degradation behaviors of the polymer. Weight loss of a polymer due to

thermal degradation is an irreversible process. This thermal degradation is largely

related to oxidation whereby the molecular bonds of a polymer are attacked by

Fig. 2 TGA curves of 75/25 blends added with varying contents of PEA

Fig. 3 DTG curves of 75/25 blends added with varying contents of PEA
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oxygen molecules [21]. It is found that the char yield of all the samples beyond

570 �C was very little, indicating the polymer blends decomposed almost

completely at 570 �C.

Figures 4 and 5 present the TGA and DTG thermograms of PLLA/PBSL blends

containing different contents of PTMEG, respectively. Apparently, all of the blends

containing PTMEG exhibited lower decomposition temperature range compared to

the uncompatibilized 75/25 blend, as shown in Fig. 4. The decomposition

temperature at weight loss of 50 % (Td50 %) of the blend containing PTMEG was

about 11 �C lower than that of the uncompatibilized blend, indicating that the

addition of PTMEG reduced the thermal stability of the PLLA/PBSL blend. This is

probably due to the relatively low molecular weight of PTMEG as compared to

PEA. According to Murariu et al. [22], high volatility of the low molecular weight

of additive contributed to the decrease in thermal stability of the polymer blend.

Moreover, it is found that char yield of the blends containing PTMEG is identical to

that of blends containing PEA. In Fig. 5, it is worth noting that DTG curve pattern

of the blend containing PTMEG are similar to that of uncompatibilized PLLA/PBSL

blend, which exhibited two peaks. This implies that PTMEG is not an effective

compatibilizer for PLLA/PBSL blend. This is probably because PTMEG contains

hydroxyl (–OH) functional group only, which is insufficient in forming good polar

interaction with PLLA and PBSL. Therefore, miscibility of the PLLA/PBSL blend

remained unchanged, whereby two steps of thermal degradation was found in the

blend system.

Fig. 4 TGA curves of 75/25 blends containing different contents of PTMEG

460 Polym. Bull. (2012) 69:455–469

123



Flexural properties

Figure 6 shows the flexural strength and modulus of the PLLA/PBSL blends as a

function of compatibilizer content. The flexural strength value of the PLLA/PBSL

containing 2 phr of PEA is almost similar to that of the blend without the

compatibilizers, whereas the addition of 2 phr of PTMEG resulted in an

approximately 20 % drop in flexural strength. Beyond 2 phr of either PEA or

PTMEG, the flexural strength of the blend reduced monotonically. It is found that

the reduction in flexural strength of the blend containing PEA is less than PTMEG.

This is attributed to the formation of good polar interaction between the carbonyl

group of PEA and the carbonyl group of PLLA and PBSL components, as seen in

the FTIR analysis in the following section. Unlike PEA, there is no good polar

interaction occurs between PTMEG and the blend components due to the absence of

carbonyl group in PTMEG. As a result, the interfacial bonding between PLLA and

PBSL phases is relatively weak as compared to that of PLLA/PBSL blend

compatibilized with PEA. This weak interfacial bonding is responsible for the

decrease in flexural strength of the blend system. When higher stress was applied to

the sample having weak interfacial bonding, the sample could not sustain higher

stress and failed prematurely. This is in agreement with the result reported by

Sarazin et al. [23] in their study on the binary and ternary blends of polylactide,

polycaprolactone, and thermoplastic starch. The addition of 2 phr of PEA resulted

in a slight increase in the flexural modulus; the flexural modulus of the sample

containing 2 phr of PTMEG did not change significantly as compared with the pure

blend. Modulus is an intrinsic property that does not change much if the chemical

Fig. 5 DTG curves of 75/25 blends containing different contents of PTMEG
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structures of the blend components are similar. Therefore, there is an insignificant

change in the modulus of the blend with the addition of PEA and PTMEG.

Figure 7 depicts the stress–strain curves of the PLLA/PBSL blends without and

with varying contents of PEA and PTMEG. It is found that the area under the curves

reduced with increasing amount of PEA and PTMEG. However, the reduction in

Fig. 6 Effect of PEA and PTMEG content on flexural strength and modulus of PLLA/PBSL blend

Fig. 7 Stress–strain curves of PLLA/PBSL blend containing various contents of PEA and PTMEG
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area is less in the PTMEG system. Furthermore, the blends compatibilized with

PEA showed a relatively abrupt drop in stress as the strain increased compared with

the blends compatibilized with PTMEG, which displayed a gradual decrease in

stress at higher strains. The deformation behavior of the latter is notably similar to

that of the PLLA/PBSL blend without a compatibilizer. This implies that PTMEG

acts as a plasticizer rather than a compatibilizer in the PLLA/PBSL blend. This is

corroborated by the FESEM micrographs of the morphology of the PLLA/PBSL

blends with and without the compatibilizers as shown in Fig. 8.

Observations of cryofractured surfaces of the blend

Based on the FESEM observations in Fig. 8, all samples comprised of two phases,

namely the continuous PLLA and the dispersed PBSL spherical-phases. It is

observed that cryofractured surface of the PLLA/PBSL blend without any

compatibilizer exhibited almost no microvoids but only some degree of phase

separation between the two phases. With the addition of 2 phr of PEA, the

cryofractured surface became flatter and smoother, as compared to the unmodified

PLLA/PBSL blend. In addition, it is observed that the spherical dispersed phases of

PBSL were embedded into the PLLA matrix phase. However, as the PEA content

increased up to 6 phr, the phase separation between the PLLA and PBSL phases

increased, as shown in Fig. 8f. This proves that the interfacial bonding of the blend

was improved by adding small amount of PEA.

In the case of PTMEG, at 2 phr content, there is an apparent phase separation

with some PBSL globules embedded into the PLLA matrix phase, and some cavities

formed by the detachment of the PBSL phase. As the PTMEG content increased up

to 4 phr, phase separation became more prominent. Further addition of PTMEG up

to 6 phr resulted in major removal of the PBSL phase from the PLLA matrix, as

seen in Fig. 8g. This observation is probably due to the presence of tetramethylene

(CH2)4 sub-units in PTMEG, which favors a good hydrophobic interaction with the

similar sub-units in PBSL. However, the (CH2)4 sub-units do not present in PLLA,

and therefore, the hydrophobic interaction does not occur between PLLA and

PTMEG. In other words, PTMEG interacts preferentially with PBSL, thus inducing

phase separation between the PLLA and PBSL phases. This is consistent with the

flexural test results presented in the previous section.

FTIR analysis

The FTIR spectra of PLLA/PBSL blend with blending ratio of 75/25 containing

various amount of PEA are shown in Fig. 9a. In Fig. 9, the carbonyl (C=O) groups

of PLLA and PBSL are represented by the peaks at 1,748 and 1,722 cm-1,

respectively. With the addition of PEA, there was a slight change in the spectrum,

notably in the region of 1,700 and 1,800 cm-1. As observed in Fig. 9b, the

uncompatibilized PLLA/PBSL blend exhibited a doubled peak in the region of

1,700 and 1,800 cm-1, corresponding to the carbonyl group of the PBSL

(1,722 cm-1) and PLLA (1,748 cm-1). This is due to the difference in bonding

motion of the PLLA and PBSL. At 2 phr of PEA, the doubled peak appeared
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slightly coalesced. This coalescence appeared more prominent at 6 phr of PEA. This

observation indicates that, at 6 phr of PEA, the carbonyl bonds of PLLA and PBSL

were vibrating synchronically as unit entities, suggesting the good interaction

between PLLA and PBSL in the presence of PEA.

On the contrary, the FTIR spectra of the blend added with varying content of

PTMEG are almost identical to those of the blend that was not compatibilized, as

Fig. 8 FESEM images of the cryofractured surfaces of the PLLA/PBSL blend a without compatibilizer,
b containing 2 phr PEA, c 2 phr PTMEG, d 4 phr PEA, e 4 phr PTMEG, f 6 phr PEA, and g 6 phr
PTMEG
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displayed in Fig. 10a. This implies that there is no interaction between the molecular

chains of the PTMEG and the PLLA/PBSL blend. In Fig. 10b, at 2 and 6 phr of

PTMEG, the doubled peak in the region of 1,700 and 1,800 cm-1 remained, indicating

that the carbonyl groups of the PLLA and PBSL were vibrating as different groups.

This represents a comparably poorer interaction between PBSL and PLLA. There have

been several references proving that the change in the peak intensity of the FTIR

spectrum represents the occurrence of interaction between molecular chains [24, 25].

The secondary forces present in the blend system accounted for the good

interaction between the PEA and the PLLA/PBSL blend. PEA contains carbonyl

groups that apparently introduce polar interaction with the blend components.

Fig. 9 FTIR spectra of a PLLA/PBSL blends containing different contents of PEA, and b magnified
portion at region between 1,680 and 1,830 cm-1
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However, in the case of PTMEG, no such interaction occurs because it is devoid of

carbonyl functionality. Figure 11 depicts the proposed interaction between PLLA

and PBSL in the presence of PEA. The chain structure was minimized using

Dreiding force-field to yield a linear chain conformation which is arranged parallel

to each other. Their interchain distance was about 2.624 Å. It is observed that, a

carbonyl oxygen of PEA aligned at a closed proximity to one of the carbonyl carbon

of PLLA while the next carbonyl oxygen of PEA aligned at closed proximity to the

carbonyl carbon of PBSL. Their distances were about 1.593 and 1.749 Å,

respectively. The distances were within the range for polar interaction to happen

Fig. 10 FTIR spectra of a PLLA/PBSL blends containing different contents of PTMEG, and b magnified
portion at region between 1,650 and 1,850 cm-1
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[26]. In their geometrical arrangement, the PEA functions to establish a good

interaction between the PBSL and PLLA thus forming good miscibility between the

two chains. This polar interaction is responsible for the improved flexural properties

of PEA incorporated system. The lack of carbonyl group in PTMEG incorporated

system disfavors for any good interchains interaction, which results in weak

interfacial bonding between the PLLA and PBSL phases, and consequently causes

an inferior mechanical property.

Conclusion

Only the sample containing 2 phr of PEA exhibited a slight improvement in flexural

strength and modulus compared with the virgin PLLA/PBSL blend. However,

PTMEG incorporated system did not show any improvement in flexural properties.

The presence of ether and carbonyl bonds in PEA induced a good polar interaction

with ester bonds in both PLLA and PBSL. In contrast, PTMEG did not act as a good

compatibilizer in the PLLA/PBSL blend. Therefore, the general strategy of

designing an effective compatibilizer is to introduce a chemical structure that is

identical to those of the blend components.
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